Pragmatic Side Effects

Jirka Marsik and Maxime Amblard

LORIA, UMR 7503, Université de Lorraine, CNRS, Inria, Campus Scientifique,
F-54506 Vandceuvre-lés-Nancy, France

20 March, 2015

1/17

Our Setting

Context:

» Montague semantics, using the A calculus

Objective:

> Increase the empirical coverage

Challenge:
» multiple sentences

» discourse phenomena
> pragmatics

2/17

Example of Pragmasemantics
de Groote — Type-Theoretic Dynamic Logic

Montague de Groote
[s]=o0 [sl=v—=(v—0)—o0
[n] = ¢ —[s] [n] = ¢ —[s]
[np] = (¢ = [s]) = [s] [p] = (¢ = [s]) = [s]

3/17

Example of Pragmasemantics
de Groote — Type-Theoretic Dynamic Logic

Montague de Groote
[s]=0 [sl=v—=(y—0)—o0
[n] = ¢ —[s] [n] = ¢ —[s]
[np] = (v = [s]) — [s] [p] = (¢ = [s]) = [s]

[He bought a car] = Ae¢. Ix.car(x) A bought(selpe(e),x) A ¢(x::e)

3/17

Drawing Inspiration from
Programming Languages

There is in my opinion no important theoretical
difference between natural languages and the
programming languages of computer scientists.

4/17

Side Effects in Programming Languages

Account for:

5/17

Side Effects in Programming Languages

Account for:

> a program’s interaction with the world of its users

» e.g., makings sounds, printing documents, moving robotic
limbs. ..

5/17

Side Effects in Programming Languages

Account for:

> a program’s interaction with the world of its users

» e.g., makings sounds, printing documents, moving robotic
limbs. ..

» non-local interactions between parts of a program

» e.g., writing to and reading from variables, throwing and
catching exceptions. ..

5/17

Side Effects in Programming Languages

Account for:

> a program’s interaction with the world of its users

» e.g., makings sounds, printing documents, moving robotic
limbs. ..

» non-local interactions between parts of a program

» e.g., writing to and reading from variables, throwing and
catching exceptions. ..

Side effects align with pragmatics in their purpose.

5/17

Type Raising

Side effects and pragmatics align also in their theories.

6/17

Type Raising
Side effects and pragmatics align also in their theories.

Most famous example: Montague's type raising
» from entities to generalized quantifiers
> ie., from i to (1 = 0)— o0

> e.g., john becomes AP.P john

6/17

Type Raising
Side effects and pragmatics align also in their theories.

Most famous example: Montague's type raising
» from entities to generalized quantifiers
> ie., from i to (1 = 0)— o0

> e.g., john becomes AP.P john

In computer science, discovered as continuations
> raising a to (@« > w) > w
» e.g., applying a function f to two arguments S and O in
continuation-passing style

AP.S(Ax.0O(\y.P (f x y)))

6/17

Generalizing Denotations

“Upgrading” the types of denotations in order to keep a
compositional semantics seems like a common strategy.

Natural Languages

Prog. Languages

Type a becomes

Quantification
Anaphora
Intensionality
Presuppositions
Questions

Focus
Expressives
Prob. semantics

Control

State
Environment
Exceptions
Non-determinism

Output
Prob. programming

(a 2 w) = w
v a Xy
0=«
adyx

a — 0

ax (a— o)
aXe

[R x af

7/17

How to Avoid Changing Denotations?

Different pragmasemantic phenomena, all in one theory
— more and more elaborate types

8/17

How to Avoid Changing Denotations?

Different pragmasemantic phenomena, all in one theory
— more and more elaborate types

We often have to change our minds on what is meaning
> old denotations — outdated

» denotations from other strands of work — incompatible

8/17

How to Avoid Changing Denotations?

Different pragmasemantic phenomena, all in one theory
— more and more elaborate types

We often have to change our minds on what is meaning
> old denotations — outdated
» denotations from other strands of work — incompatible

Some solutions to this problem exist already in computer science.

8/17

Example from Computer Science

3 x+ 3

print(” hello”)

9/17

Example from Computer Science

3 x4+ 3 print(” hello”)
3
As. (3,s) As. (s("x")+3,s)

9/17

Example from Computer Science

3 x+ 3 print(” hello”)
3
As. (3,s) As. (s("x")+3,s)
As.(3,5,"") | As. (s("x") +3,5,"") | As.{(),s," hello")

9/17

Example from Computer Science

3 x+ 3 print(” hello”)
3
As. (3,s) As. (s("x") +3,s)
As.(3,5,"") | As. (s("x") +3,5,"") | As.{(),s," hello")
3

9/17

Example from Computer Science

3 x+ 3 print(” hello”)

3

As. (3,s) As. (s("x") +3,s)
As.(3,5,"") | As. (s("x") +3,5,"") | As.{(),s," hello")

3
(get("x"))
y
3 y+3

9/17

Example from Computer Science

3 x+ 3 print(” hello”)
3
As. (3,s) As. (s("x")+3,s)
As.(3,5,"") | As. (s("x") +3,5,"") | As.{(),s," hello")
3
Coet(x))
y
3 y+3
(get("x")) (print ("hello"))
y ()
3 y+3 ()

9/17

Example from Linguistics

every boy

she

John
J

10/17

Example from Linguistics

John every boy she
J
AP.Pj AP.¥x.(boy x) — (P x)

10/17

Example from Linguistics

John every boy she
J
AP.Pj AP.¥x.(boy x) — (P x)

APe¢.[Vx.(boy x) —

APe¢.Pje¢ Pxe(\e TN e

APeg.P(selgpe(e))ed

10/17

Example from Linguistics

John every boy she
J
AP.Pj AP.¥x.(boy x) — (P x)

APe¢.[Vx.(boy x) —

APe¢.Pje¢ Pxe(\e TN e

APeg.P(selgpe(e))ed

j

10/17

Example from Linguistics

John every boy she
J
AP.Pj AP.¥x.(boy x) — (P x)

APe¢.[Vx.(boy x) —

APe¢.Pje¢ Pxe(\e TN e

APeg.P(selgpe(e))ed

j

C scope (Ak.Vx.(boy x) - (k x)) >

X

10/17

Example from Linguistics

John every boy she
J
AP.Pj AP.¥x.(boy x) — (P x)

APe¢.[Vx.(boy x) —

APe¢.Pje¢ Pxe(\e TN e

APeg.P(selgpe(e))ed

j

C scope (Ak.Vx.(boy x) - (k x)) >

X

j X

C scope (Ak.¥x.H[(boy x) - (k x)]) D < get ())

X e

j X sel_she(e)

10/17

Reaping the Benefits of Stability

Consider the semantics of a relational noun like mother in the
construction the mother of X.

11/17

Reaping the Benefits of Stability

Consider the semantics of a relational noun like mother in the
construction the mother of X.

[the mother of] = Ax. mother(x)

11/17

Reaping the Benefits of Stability

Consider the semantics of a relational noun like mother in the
construction the mother of X.

[the mother of] = Ax. mother(x)
[the mother of] = AXP. X (Ax. P (mother(x)))

11/17

Reaping the Benefits of Stability

Consider the semantics of a relational noun like mother in the
construction the mother of X.

[the mother of] = Ax. mother(x)
[the mother of] = AXP. X (Ax. P (mother(x)))
[the mother of] = AXPe¢. X (Axe'¢’. P (mother(x)) € ¢') e ¢

11/17

Reaping the Benefits of Stability

Consider the semantics of a relational noun like mother in the
construction the mother of X.

[the mother of] = Ax. mother(x)
[the mother of] = AXP. X (Ax. P (mother(x)))
[the mother of] = AXPe¢. X (Axe'¢’. P (mother(x)) € ¢') e ¢

Its denotation changes even though the meaning stays morally the
same.

11/17

Reaping the Benefits of Stability

How does it work in our system?

12/17

Reaping the Benefits of Stability

How does it work in our system?

[the mother of] = Ax. mother(x)

12/17

Reaping the Benefits of Stability

How does it work in our system?

[the mother of] = Ax. mother(x)

mother(j)

12/17

Reaping the Benefits of Stability

How does it work in our system?

[the mother of] = Ax. mother(x)

(scope (Ak.¥x.H[(boy x) = (k x)]) D

X
j X
4 4
C scope (Ak.Vx.H[(boy x) = (k x)]))
X
mother(j) mother(x)

12/17

Reaping the Benefits of Stability

How does it work in our system?

[the mother of] = Ax. mother(x)

(scope (Ak.¥x.H[(boy x) = (k x)]) D

X
j X
4 4
C scope (Ak.Vx.H[(boy x) = (k x)1))
X
mother(j) mother(x)

C get))

e

sel_she(e)

4

C get0)

e

mother(sel_she(e))

12/17

Reaping the Benefits of Stability

Our meaning for the mother of X is agnostic about its argument.
It works with simple, quantificational or dynamic meanings of X.

13/17

Reaping the Benefits of Stability

Our meaning for the mother of X is agnostic about its argument.
It works with simple, quantificational or dynamic meanings of X.

This also holds for more involved meanings of the relational noun.

13/17

Reaping the Benefits of Stability

Our meaning for the mother of X is agnostic about its argument.
It works with simple, quantificational or dynamic meanings of X.

This also holds for more involved meanings of the relational noun.

» dynamic mother

fresh ()

y

[the mother of] = Ax. (assert (y = mother(x)))

0

13/17

Reaping the Benefits of Stability

Our meaning for the mother of X is agnostic about its argument.
It works with simple, quantificational or dynamic meanings of X.

This also holds for more involved meanings of the relational noun.

> presuppositional mother

(presuppose (Ay. mother(y, x)))

[the mother of] = Ax. z

13/17

Algebraic Effects. ..

We have been using a framework developed in PL research.
In it:
> interacting with the context = throwing an exception

> the exception contains a response for every possible outcome
of the operation

14/17

Algebraic Effects. ..
We have been using a framework developed in PL research.
In it:
> interacting with the context = throwing an exception

» the exception contains a response for every possible outcome
of the operation

Denotations are: (speaker ())

» algebraic expressions (drawn i

as trees)
select (she)
> generators = values

> operators = possible s

interactions with the context < >
presuppose (Ax. mother(x, s))
> arity = the number of

possible outcomes m

> type = Fx(7) met(i, m)

14/17

.and Handlers
Handlers give scope and interpretation to (some of) the effects in a
computation.
» Practically, they are like exception handlers in programming
languages.

» Technically, they are catamorphisms (folds) on the algebra of
effects.

15/17

.and Handlers

Handlers give scope and interpretation to (some of) the effects in a
computation.

» Practically, they are like exception handlers in programming
languages.

» Technically, they are catamorphisms (folds) on the algebra of
effects.

Examples:

> a tensed verb delimits quantification, creating a scope island

v

logical negation blocks referent accessibility (as in DRT or
TTDL)

the common ground accomodates presuppositions if they have
not been yet assumed

v

v

hypotheseses can cancel presuppositions in their scope
(if ..., then ...)

15/17

Proof of Concept

We have built a small prototype to test and explore our approach.

> in-situ quantification

v

discourse anaphora

v

presuppositions (of referentials)
their interactions

v

> e.g., binding problem

16/17

Summary

> perspective shift

» from denotations as complex objects
to denotations as complex processes producing simple objects
» focus on what meanings do, not on what they are

17/17

Summary

> perspective shift

» from denotations as complex objects
to denotations as complex processes producing simple objects
» focus on what meanings do, not on what they are

» content/context distinction

» objects — purely truth-conditional material

> process — we dump the pragmatic wastebasket here

» placement of non-locality phenomena such as in-situ
quantification is to our discretion

17/17

Summary

> perspective shift
» from denotations as complex objects

to denotations as complex processes producing simple objects
» focus on what meanings do, not on what they are

» content/context distinction
» objects — purely truth-conditional material
> process — we dump the pragmatic wastebasket here
» placement of non-locality phenomena such as in-situ
quantification is to our discretion

> easier to manage multiple effects

» our driving motivation (empirical coverage)
» stable denotations help avoid generalizing to the worst case
» captures parameters, mutable state, continuations, projections
and their filtering/cancelling both flexibly and compositionally
» used in PLT research and functional programming too

17/17

