
Pragmatic Side Effects

Jirka Mařśık and Maxime Amblard

LORIA, UMR 7503, Université de Lorraine, CNRS, Inria, Campus Scientifique,
F-54506 Vandœuvre-lès-Nancy, France

20 March, 2015

1/17



Our Setting

Context:

I Montague semantics, using the λ calculus

Objective:

I Increase the empirical coverage

Challenge:
I multiple sentences

I discourse phenomena
I pragmatics

2/17



Example of Pragmasemantics
de Groote – Type-Theoretic Dynamic Logic

Montague

JsK = o

JnK = ι→ JsK
JnpK = (ι→ JsK)→ JsK

de Groote

JsK = γ → (γ → o)→ o

JnK = ι→ JsK
JnpK = (ι→ JsK)→ JsK

JHe bought a carK = λeφ. ∃x .car(x) ∧ bought(selhe(e), x) ∧ φ(x ::e)

3/17



Example of Pragmasemantics
de Groote – Type-Theoretic Dynamic Logic

Montague

JsK = o

JnK = ι→ JsK
JnpK = (ι→ JsK)→ JsK

de Groote

JsK = γ → (γ → o)→ o

JnK = ι→ JsK
JnpK = (ι→ JsK)→ JsK

JHe bought a carK = λeφ. ∃x .car(x) ∧ bought(selhe(e), x) ∧ φ(x ::e)

3/17



Drawing Inspiration from
Programming Languages

There is in my opinion no important theoretical
difference between natural languages and the
programming languages of computer scientists.

4/17



Side Effects in Programming Languages

Account for:

I a program’s interaction with the world of its users
I e.g., makings sounds, printing documents, moving robotic

limbs. . .

I non-local interactions between parts of a program
I e.g., writing to and reading from variables, throwing and

catching exceptions. . .

Side effects align with pragmatics in their purpose.

5/17



Side Effects in Programming Languages

Account for:

I a program’s interaction with the world of its users
I e.g., makings sounds, printing documents, moving robotic

limbs. . .

I non-local interactions between parts of a program
I e.g., writing to and reading from variables, throwing and

catching exceptions. . .

Side effects align with pragmatics in their purpose.

5/17



Side Effects in Programming Languages

Account for:

I a program’s interaction with the world of its users
I e.g., makings sounds, printing documents, moving robotic

limbs. . .

I non-local interactions between parts of a program
I e.g., writing to and reading from variables, throwing and

catching exceptions. . .

Side effects align with pragmatics in their purpose.

5/17



Side Effects in Programming Languages

Account for:

I a program’s interaction with the world of its users
I e.g., makings sounds, printing documents, moving robotic

limbs. . .

I non-local interactions between parts of a program
I e.g., writing to and reading from variables, throwing and

catching exceptions. . .

Side effects align with pragmatics in their purpose.

5/17



Type Raising

Side effects and pragmatics align also in their theories.

Most famous example: Montague’s type raising

I from entities to generalized quantifiers

I i.e., from ι to (ι→ o)→ o

I e.g., john becomes λP.P john

In computer science, discovered as continuations

I raising α to (α→ ω)→ ω

I e.g., applying a function f to two arguments S and O in
continuation-passing style

λP.S(λx .O(λy .P (f x y)))

6/17



Type Raising

Side effects and pragmatics align also in their theories.

Most famous example: Montague’s type raising

I from entities to generalized quantifiers

I i.e., from ι to (ι→ o)→ o

I e.g., john becomes λP.P john

In computer science, discovered as continuations

I raising α to (α→ ω)→ ω

I e.g., applying a function f to two arguments S and O in
continuation-passing style

λP.S(λx .O(λy .P (f x y)))

6/17



Type Raising

Side effects and pragmatics align also in their theories.

Most famous example: Montague’s type raising

I from entities to generalized quantifiers

I i.e., from ι to (ι→ o)→ o

I e.g., john becomes λP.P john

In computer science, discovered as continuations

I raising α to (α→ ω)→ ω

I e.g., applying a function f to two arguments S and O in
continuation-passing style

λP.S(λx .O(λy .P (f x y)))

6/17



Generalizing Denotations

“Upgrading” the types of denotations in order to keep a
compositional semantics seems like a common strategy.

Natural Languages Prog. Languages Type α becomes

Quantification Control (α→ ω)→ ω
Anaphora State γ → α× γ
Intensionality Environment δ → α
Presuppositions Exceptions α⊕ χ
Questions Non-determinism α→ o
Focus α× (α→ o)
Expressives Output α× ε
Prob. semantics Prob. programming [R× α]

7/17



How to Avoid Changing Denotations?

Different pragmasemantic phenomena, all in one theory
→ more and more elaborate types

We often have to change our minds on what is meaning

I old denotations → outdated

I denotations from other strands of work → incompatible

Some solutions to this problem exist already in computer science.

8/17



How to Avoid Changing Denotations?

Different pragmasemantic phenomena, all in one theory
→ more and more elaborate types

We often have to change our minds on what is meaning

I old denotations → outdated

I denotations from other strands of work → incompatible

Some solutions to this problem exist already in computer science.

8/17



How to Avoid Changing Denotations?

Different pragmasemantic phenomena, all in one theory
→ more and more elaborate types

We often have to change our minds on what is meaning

I old denotations → outdated

I denotations from other strands of work → incompatible

Some solutions to this problem exist already in computer science.

8/17



Example from Computer Science

3 x + 3 print(”hello”)
3

λs. 〈3, s〉 λs. 〈s(”x”) + 3, s〉
λs. 〈3, s, ””〉 λs. 〈s(”x”) + 3, s, ””〉 λs. 〈(), s, ”hello”〉

9/17



Example from Computer Science

3 x + 3 print(”hello”)
3

λs. 〈3, s〉 λs. 〈s(”x”) + 3, s〉

λs. 〈3, s, ””〉 λs. 〈s(”x”) + 3, s, ””〉 λs. 〈(), s, ”hello”〉

9/17



Example from Computer Science

3 x + 3 print(”hello”)
3

λs. 〈3, s〉 λs. 〈s(”x”) + 3, s〉
λs. 〈3, s, ””〉 λs. 〈s(”x”) + 3, s, ””〉 λs. 〈(), s, ”hello”〉

9/17



Example from Computer Science

3 x + 3 print(”hello”)
3

λs. 〈3, s〉 λs. 〈s(”x”) + 3, s〉
λs. 〈3, s, ””〉 λs. 〈s(”x”) + 3, s, ””〉 λs. 〈(), s, ”hello”〉

9/17



Example from Computer Science

3 x + 3 print(”hello”)
3

λs. 〈3, s〉 λs. 〈s(”x”) + 3, s〉
λs. 〈3, s, ””〉 λs. 〈s(”x”) + 3, s, ””〉 λs. 〈(), s, ”hello”〉

9/17



Example from Computer Science

3 x + 3 print(”hello”)
3

λs. 〈3, s〉 λs. 〈s(”x”) + 3, s〉
λs. 〈3, s, ””〉 λs. 〈s(”x”) + 3, s, ””〉 λs. 〈(), s, ”hello”〉

9/17



Example from Linguistics
John every boy she

j

λP.Pj λP.∀x .(boy x)→ (P x)

λPeφ.Pjeφ
λPeφ.[∀x .(boy x)→
P x e (λe ′.>)] ∧ φ e

λPeφ.P(selshe(e))eφ

10/17



Example from Linguistics
John every boy she

j

λP.Pj λP.∀x .(boy x)→ (P x)

λPeφ.Pjeφ
λPeφ.[∀x .(boy x)→
P x e (λe ′.>)] ∧ φ e

λPeφ.P(selshe(e))eφ

10/17



Example from Linguistics
John every boy she

j

λP.Pj λP.∀x .(boy x)→ (P x)

λPeφ.Pjeφ
λPeφ.[∀x .(boy x)→
P x e (λe ′.>)] ∧ φ e

λPeφ.P(selshe(e))eφ

10/17



Example from Linguistics
John every boy she

j

λP.Pj λP.∀x .(boy x)→ (P x)

λPeφ.Pjeφ
λPeφ.[∀x .(boy x)→
P x e (λe ′.>)] ∧ φ e

λPeφ.P(selshe(e))eφ

10/17



Example from Linguistics
John every boy she

j

λP.Pj λP.∀x .(boy x)→ (P x)

λPeφ.Pjeφ
λPeφ.[∀x .(boy x)→
P x e (λe ′.>)] ∧ φ e

λPeφ.P(selshe(e))eφ

10/17



Example from Linguistics
John every boy she

j

λP.Pj λP.∀x .(boy x)→ (P x)

λPeφ.Pjeφ
λPeφ.[∀x .(boy x)→
P x e (λe ′.>)] ∧ φ e

λPeφ.P(selshe(e))eφ

10/17



Reaping the Benefits of Stability

Consider the semantics of a relational noun like mother in the
construction the mother of X.

Jthe mother ofK = λx . mother(x)

Jthe mother ofK = λXP. X (λx . P (mother(x)))

Jthe mother ofK = λXPeφ. X (λxe ′φ′. P (mother(x)) e ′ φ′) e φ

Its denotation changes even though the meaning stays morally the
same.

11/17



Reaping the Benefits of Stability

Consider the semantics of a relational noun like mother in the
construction the mother of X.

Jthe mother ofK = λx . mother(x)

Jthe mother ofK = λXP. X (λx . P (mother(x)))

Jthe mother ofK = λXPeφ. X (λxe ′φ′. P (mother(x)) e ′ φ′) e φ

Its denotation changes even though the meaning stays morally the
same.

11/17



Reaping the Benefits of Stability

Consider the semantics of a relational noun like mother in the
construction the mother of X.

Jthe mother ofK = λx . mother(x)

Jthe mother ofK = λXP. X (λx . P (mother(x)))

Jthe mother ofK = λXPeφ. X (λxe ′φ′. P (mother(x)) e ′ φ′) e φ

Its denotation changes even though the meaning stays morally the
same.

11/17



Reaping the Benefits of Stability

Consider the semantics of a relational noun like mother in the
construction the mother of X.

Jthe mother ofK = λx . mother(x)

Jthe mother ofK = λXP. X (λx . P (mother(x)))

Jthe mother ofK = λXPeφ. X (λxe ′φ′. P (mother(x)) e ′ φ′) e φ

Its denotation changes even though the meaning stays morally the
same.

11/17



Reaping the Benefits of Stability

Consider the semantics of a relational noun like mother in the
construction the mother of X.

Jthe mother ofK = λx . mother(x)

Jthe mother ofK = λXP. X (λx . P (mother(x)))

Jthe mother ofK = λXPeφ. X (λxe ′φ′. P (mother(x)) e ′ φ′) e φ

Its denotation changes even though the meaning stays morally the
same.

11/17



Reaping the Benefits of Stability

How does it work in our system?

Jthe mother ofK = λx . mother(x)

⇓ ⇓ ⇓

12/17



Reaping the Benefits of Stability

How does it work in our system?

Jthe mother ofK = λx . mother(x)

⇓ ⇓ ⇓

12/17



Reaping the Benefits of Stability

How does it work in our system?

Jthe mother ofK = λx . mother(x)

⇓

⇓ ⇓

12/17



Reaping the Benefits of Stability

How does it work in our system?

Jthe mother ofK = λx . mother(x)

⇓ ⇓

⇓

12/17



Reaping the Benefits of Stability

How does it work in our system?

Jthe mother ofK = λx . mother(x)

⇓ ⇓ ⇓

12/17



Reaping the Benefits of Stability

Our meaning for the mother of X is agnostic about its argument.
It works with simple, quantificational or dynamic meanings of X.

This also holds for more involved meanings of the relational noun.

13/17



Reaping the Benefits of Stability

Our meaning for the mother of X is agnostic about its argument.
It works with simple, quantificational or dynamic meanings of X.

This also holds for more involved meanings of the relational noun.

13/17



Reaping the Benefits of Stability

Our meaning for the mother of X is agnostic about its argument.
It works with simple, quantificational or dynamic meanings of X.

This also holds for more involved meanings of the relational noun.

I dynamic mother

Jthe mother ofK = λx .

13/17



Reaping the Benefits of Stability

Our meaning for the mother of X is agnostic about its argument.
It works with simple, quantificational or dynamic meanings of X.

This also holds for more involved meanings of the relational noun.

I presuppositional mother

Jthe mother ofK = λx .

13/17



Algebraic Effects. . .

We have been using a framework developed in PL research.

In it:

I interacting with the context = throwing an exception

I the exception contains a response for every possible outcome
of the operation

Denotations are:

I algebraic expressions (drawn
as trees)

I generators = values

I operators = possible
interactions with the context

I arity = the number of
possible outcomes

I type = FΣ(τ)

14/17



Algebraic Effects. . .
We have been using a framework developed in PL research.

In it:

I interacting with the context = throwing an exception

I the exception contains a response for every possible outcome
of the operation

Denotations are:

I algebraic expressions (drawn
as trees)

I generators = values

I operators = possible
interactions with the context

I arity = the number of
possible outcomes

I type = FΣ(τ)

14/17



. . . and Handlers

Handlers give scope and interpretation to (some of) the effects in a
computation.

I Practically, they are like exception handlers in programming
languages.

I Technically, they are catamorphisms (folds) on the algebra of
effects.

Examples:

I a tensed verb delimits quantification, creating a scope island

I logical negation blocks referent accessibility (as in DRT or
TTDL)

I the common ground accomodates presuppositions if they have
not been yet assumed

I hypotheseses can cancel presuppositions in their scope
(if . . . , then . . . )

15/17



. . . and Handlers

Handlers give scope and interpretation to (some of) the effects in a
computation.

I Practically, they are like exception handlers in programming
languages.

I Technically, they are catamorphisms (folds) on the algebra of
effects.

Examples:

I a tensed verb delimits quantification, creating a scope island

I logical negation blocks referent accessibility (as in DRT or
TTDL)

I the common ground accomodates presuppositions if they have
not been yet assumed

I hypotheseses can cancel presuppositions in their scope
(if . . . , then . . . )

15/17



Proof of Concept

We have built a small prototype to test and explore our approach.

I in-situ quantification

I discourse anaphora

I presuppositions (of referentials)
I their interactions

I e.g., binding problem

16/17



Summary

I perspective shift
I from denotations as complex objects

to denotations as complex processes producing simple objects
I focus on what meanings do, not on what they are

I content/context distinction
I objects – purely truth-conditional material
I process – we dump the pragmatic wastebasket here
I placement of non-locality phenomena such as in-situ

quantification is to our discretion

I easier to manage multiple effects
I our driving motivation (empirical coverage)
I stable denotations help avoid generalizing to the worst case
I captures parameters, mutable state, continuations, projections

and their filtering/cancelling both flexibly and compositionally
I used in PLT research and functional programming too

17/17



Summary

I perspective shift
I from denotations as complex objects

to denotations as complex processes producing simple objects
I focus on what meanings do, not on what they are

I content/context distinction
I objects – purely truth-conditional material
I process – we dump the pragmatic wastebasket here
I placement of non-locality phenomena such as in-situ

quantification is to our discretion

I easier to manage multiple effects
I our driving motivation (empirical coverage)
I stable denotations help avoid generalizing to the worst case
I captures parameters, mutable state, continuations, projections

and their filtering/cancelling both flexibly and compositionally
I used in PLT research and functional programming too

17/17



Summary

I perspective shift
I from denotations as complex objects

to denotations as complex processes producing simple objects
I focus on what meanings do, not on what they are

I content/context distinction
I objects – purely truth-conditional material
I process – we dump the pragmatic wastebasket here
I placement of non-locality phenomena such as in-situ

quantification is to our discretion

I easier to manage multiple effects
I our driving motivation (empirical coverage)
I stable denotations help avoid generalizing to the worst case
I captures parameters, mutable state, continuations, projections

and their filtering/cancelling both flexibly and compositionally
I used in PLT research and functional programming too

17/17


