Algebraic Effects and Handlers in Natural Language Interpretation

Jiri Marsik and Maxime Amblard
LORIA, UMR 7503, Université de Lorraine, CNRS, Inria, Campus Scientifique, F-54506 Vandceuvre-les-Nancy, France

Objectives

® Detailed semantics for a large-scale grammar of a natural language

@ Capturing the interactions of non-local (i.e. non-compositional) semantic
phenomena (anaphora, in-situ quantification, event arguments,
presupposition, extraction. . . )

® Multiple semantic phenomena in a single treatment without overly
complicated types and terms

Motivation

= non-local phenomena + compositionality = generalizing meaning (often by
abstracting over some new parameter)
= e.g. anaphora: “dynamic” denotations = functions from states of discourse to “static”
denotations and updated states of discourse

« more non-local phenomena =- more parameters = more complexity

« most research focuses on single phenomena

Syntax
/ e \
every + _ 1t
/ T \
farmer _+ owns + _
€ a -+ _
donkey
Glossary

« Dynamic logic
VP==3z.=Px
A= B=-(AN~-B)

« Effectful operations

3P = P (fresh ())
=~ A = —(with drs (get ()) handle A)

get : 1 — v{get}
fresh:1—
assert : o —s 112ssert}

scope_ over : ((1 — 0) — 0) —» (15coPe_over;

move : 1 — ,imove;
- Handlers
drs - N = (O{get;fresh;assert]p} — Op)
tensed clause : 0\5OPe—OVerlp} . ,p
extract : oMoVl = (; — qtmovelrh)
Conclusion
We have:

« motivated the use of algebraic effects and handlers in semantics.

= translated de Groote’s continuation-based dynamic logic [8] to effects,
reconstructing notions from DRT.

« treated extraction as an effect in interpretation instead of using
hypothetical reasoning and lambda abstractions in the syntax.

Effects in Interpretation

- Shan [1]: semantic generalizations & monads

= Barker [2|: Montague’s PT(Q ~ evaluation order + continuations
« Shan [3], Kiselyov |4]: non-local phenomena =~ computational effects

« = elegant explanation of their interactions

- Us: same tradition, using algebraic effects and handlers [5]

Effects and Handlers

« Effecttul operation: throws an exception containing the supplied argument

and the current continuation

« Handlers: capture the exceptions to implement the operations

= ¢.g. just by applying the continuation to some result

« Type-and-effect system: like Java’s checked exceptions

- Advantage: easy to combine multiple effects in a single semantics 6] |7]

Semantics

with tensed_clause handle beat(_, _)

/\

scope_over (\k.Vz. () = k(x)) selit(get ())

/

Ar. let r = with extract handle _ in

/_<x> Ar() \
farmer with tensed_clause handle own(_, _)
|
/ \
move () let x = fresh () in

let () = assert (_(z)) in

”E \

donkey

Future Work

We would like to:

« show how effects and handlers apply to the other non-local phenomena
(presupposition, event arguments, optional items).

« build a fragment that combines all of these.

« design a calculus with algebraic effects and handlers and a suitable
evaluation order (CBV vs CBN).

References

1] Chung-chieh Shan

Monads for natural language semantics (2002)

2] Chris Barker

Continuations and the nature of quantification (2002)

3] Chung-chieh Shan
Linguistic side effects (2005)

4] Oleg Kiselyov
Call-by-name linguistic side effects (2008)

5] Andrej Bauer and Matija Pretnar
Programming with algebraic effects and handlers (2012)

6] Robert Cartwright and Matthias Felleisen
Extensible denotational language specifications (1994)

7] Oleg Kiselyov, Amr Sabry and Cameron Swords
Extensible effects: an alternative to monad transformers (2013)

8] Philippe de Groote
Towards a montagovian account of dynamics (2006)



