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Objectives

® Detailed semantics for a large-scale grammar of a natural language

@ Capturing the interactions of non-local (i.e. non-compositional) semantic
phenomena (anaphora, in-situ quantification, event arguments,
presupposition, extraction. . . )

® Multiple semantic phenomena in a single treatment without overly
complicated types and terms

Motivation

= non-local phenomena + compositionality = generalizing meaning (often by
abstracting over some new parameter)
= e.g. anaphora: “dynamic” denotations = functions from states of discourse to “static”
denotations and updated states of discourse

« more non-local phenomena =- more parameters = more complexity

« most research focuses on single phenomena
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« Dynamic logic
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Conclusion
We have:

« motivated the use of algebraic effects and handlers in semantics.

= translated de Groote’s continuation-based dynamic logic [8] to effects,
reconstructing notions from DRT.

« treated extraction as an effect in interpretation instead of using
hypothetical reasoning and lambda abstractions in the syntax.

Effects in Interpretation

- Shan [1]: semantic generalizations & monads

= Barker [2|: Montague’s PT(Q ~ evaluation order + continuations
« Shan [3], Kiselyov |4]: non-local phenomena =~ computational effects

« = elegant explanation of their interactions

- Us: same tradition, using algebraic effects and handlers [5]

Effects and Handlers

« Effecttul operation: throws an exception containing the supplied argument

and the current continuation

« Handlers: capture the exceptions to implement the operations

= ¢.g. just by applying the continuation to some result

« Type-and-effect system: like Java’s checked exceptions

- Advantage: easy to combine multiple effects in a single semantics 6] |7]

Semantics
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Future Work

We would like to:

« show how effects and handlers apply to the other non-local phenomena
(presupposition, event arguments, optional items).

« build a fragment that combines all of these.

« design a calculus with algebraic effects and handlers and a suitable
evaluation order (CBV vs CBN).
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